Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt B): 130383, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444070

RESUMO

Infants are characterized by an immaturity of the gut ecosystem and a high exposure to microplastics (MPs) through diet, dust and suckling. However, the bidirectional interactions between MPs and the immature infant intestinal microbiota remain unknown. Our study aims to investigate the impact of chronic exposure to polyethylene (PE) MPs on the gut microbiota and intestinal barrier of infants, using the new Toddler mucosal Artificial Colon coupled with a co-culture of epithelial and mucus-secreting cells. Gut microbiota composition was determined by 16S metabarcoding and microbial activities were evaluated by gas, short chain fatty acid and volatolomics analyses. Gut barrier integrity was assessed via evaluation of intestinal permeability, inflammation and mucus synthesis. Exposure to PE MPs induced gut microbial shifts increasing α-diversity and abundance of potentially harmful pathobionts, such as Dethiosulfovibrionaceae and Enterobacteriaceae. Those changes were associated to butyrate production decrease and major changes in volatile organic compounds profiles. In contrast, no significant impact of PE MPs on the gut barrier, as mediated by microbial metabolites, was reported. For the first time, this study indicates that ingestion of PE MPs can induce perturbations in the gut microbiome of infants. Next step would be to further investigate the potential vector effect of MPs.


Assuntos
Microbioma Gastrointestinal , Polietileno , Humanos , Lactente , Polietileno/toxicidade , Microplásticos , Plásticos , Ecossistema
2.
Methods Mol Biol ; 2291: 297-315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704760

RESUMO

Due to obvious ethical and technical reasons, it remains very difficult to evaluate the survival and expression of virulence genes of food-borne pathogens, such as Shiga toxin-producing Escherichia coli (STEC) in the human gastrointestinal tract. Here, we describe the use of the dynamic TNO (Toegepast Natuurwetenschappelijk Onderzoek) gastrointestinal model (TIM-1) as a powerful in vitro tool to obtain the kinetics of STEC survival by plate counting, the regulation of major virulence genes by RT-qPCR, and the production of Shiga toxins by ELISA, in the human stomach and small intestine. The gut model was adapted in order that in vitro digestions were performed both under adult and child digestive conditions, specific at risk populations for STEC infections.


Assuntos
Regulação Bacteriana da Expressão Gênica , Intestinos/microbiologia , Modelos Biológicos , Escherichia coli Shiga Toxigênica , Estômago/microbiologia , Fatores de Virulência/biossíntese , Adulto , Criança , Humanos , Escherichia coli Shiga Toxigênica/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA